Improved random noise attenuation using f-x empirical mode decomposition and local similarity
基于相似度权重算子和f-x域经验模态分解的随机噪声衰减方法(英文)作者机构:中国石油大学-北京 美国德克萨斯大学奥斯汀分校 中国石油西南油气田分公司勘探开发研究院
出 版 物:《Applied Geophysics》 (应用地球物理(英文版))
年 卷 期:2016年第13卷第1期
页 面:127-134,220页
核心收录:
学科分类:081801[工学-矿产普查与勘探] 081802[工学-地球探测与信息技术] 08[工学] 0818[工学-地质资源与地质工程]
基 金:supported by the National Natural Science Foundation of China(No.41274137) the National Engineering Laboratory of Offshore Oil Exploration
主 题:Random noise attenuation f-x empirical mode decomposition local similarity dipping event
摘 要:Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal ***,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful *** on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving *** with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised *** and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method.