A new piecewise linear Chen system of fractional-order:Numerical approximation of stable attractors
A new piecewise linear Chen system of fractional-order:Numerical approximation of stable attractors作者机构:Department of Mathematics and Computer ScienceEmanuel University of Oradea Romanian Institute of Science and Technology Normandie University ULHLMAHF-76600 Le Havre FR CNRS 3335ISCN25 rue Philippe Lebon 76600 Le HavreFrance School of Mathematics and StatisticsUniversity of Western Australia
出 版 物:《Chinese Physics B》 (中国物理B(英文版))
年 卷 期:2015年第24卷第6期
页 面:216-224页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0704[理学-天文学] 0701[理学-数学]
基 金:funded by the European Regional Development Funding via RISC project by CPER Region Haute Normandie France,the Australian Research Council via a Future Fellowship(FT110100896) Discovery Project(DP140100203)
主 题:PWL Chen attractor of fractional-order parameter switching Cellina's Theorem Filippov regu-larization Sigmoid function bifurcation diagram
摘 要:In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also multistability, i.e., the existence of small pararheter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated.