Scaling relation of domain competition on(2+1)-dimensional ballistic deposition model with surface diffusion
Scaling relation of domain competition on(2+1)-dimensional ballistic deposition model with surface diffusion作者机构:Department of Physics Gakushuin University Computer Centre Gakushuin University Department of Physical Science Ritsumeikan University Department of Physics Keio University
出 版 物:《Journal of Semiconductors》 (半导体学报(英文版))
年 卷 期:2016年第37卷第9期
页 面:12-17页
核心收录:
学科分类:07[理学] 070205[理学-凝聚态物理] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0702[理学-物理学]
主 题:domain competition ballistic deposition model Kardar Parisi Zhang universality class surface diffusion
摘 要:During heteroepitaxial overlayer growth multiple crystal domains nucleated on a substrate surface compete with each other in such a manner that a domain covered by neighboring ones stops *** number density of active domains ρ decreases as the height h increases.A simple scaling argument leads to a scaling law of ρ~ h^(-γ) with a coarsening exponent γ=d/z,where d is the dimension of the substrate surface and z the dynamic exponent of a growth *** scaling relation is confirmed by performing kinetic Monte Carlo simulations of the ballistic deposition model on a two-dimensional(d=2) surface,even when an isolated deposited particle diffuses on a crystal surface.