A Review of Unified A Posteriori Finite Element Error Control
作者机构:Department of MathematicsHumboldt Universität zu BerlinD-10099 BerlinGermany Department of Computational Science and EngineeringYonsei UniversitySeoul 120-749Korea Department of MathematicsUniversity of HoustonHouston TX 77204-3008USA. Institute of MathematicsUniversity of AugsburgD-86159 AugsburgGermany
出 版 物:《Numerical Mathematics(Theory,Methods and Applications)》 (高等学校计算数学学报(英文版))
年 卷 期:2012年第5卷第4期
页 面:509-558页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the German National Science Foundation DFG within the Research Center MATHEON and,with the first author,by the WCU program through KOSEF(R31-2008-000-10049-0) support by the NSF grants DMS-0707602,DMS-0810176,DMS-0811153,DMS-0914788 the German National Science Foundation within the Priority Programs SPP 1253,SPP 1506 the German Federal Ministry for Education and Research(BMBF)within the projects BMBF-FROPT and BMBF-MeFreSim the European Science Foundation(ESF)within the ESF Program OPTPDE
主 题:A posteriori error analysis finite element method nonconforming finite element method mixed finite element method adaptive algorithm Poisson equation Laméequations Stokes equations Maxwell equations unified a posteriori error analysis discontinuous Galerkin residual estimator
摘 要:This paper aims at a general guideline to obtain a posteriori error estimates for the finite element error control in computational partial differential *** the abstract setting of mixed formulations,a generalised formulation of the corresponding residuals is proposed which then allows for the unified estimation of the respective dual ***,this can be done with an approach which is applicable in the same way to conforming,nonconforming and mixed ***,the unified approach is applied to various model *** particular,we consider the Laplace,Stokes,Navier-Lamé,and the semi-discrete eddy current equations.