咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Integrated search technique fo... 收藏

Integrated search technique for parameter determination of SVM for speech recognition

Integrated search technique for parameter determination of SVM for speech recognition

作     者:Teena Mittal R.K.Sharma 

作者机构:Department of Electronics and Communication Engineering Thapar University Department of Computer Science and Engineering Thapar University 

出 版 物:《Journal of Central South University》 (中南大学学报(英文版))

年 卷 期:2016年第23卷第6期

页      面:1390-1398页

核心收录:

学科分类:0810[工学-信息与通信工程] 0711[理学-系统科学] 07[理学] 0806[工学-冶金工程] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:support vector machine (SVM) predator prey optimization speech recognition Mel-frequency cepstral coefficients wavelet packets Hooke-Jeeves method 

摘      要:Support vector machine(SVM)has a good application prospect for speech recognition problems;still optimum parameter selection is a vital issue for *** improve the learning ability of SVM,a method for searching the optimal parameters based on integration of predator prey optimization(PPO)and Hooke-Jeeves method has been *** PPO technique,population consists of prey and predator *** prey particles search the optimum solution and predator always attacks the global best prey *** solution obtained by PPO is further improved by applying Hooke-Jeeves *** method is applied to recognize isolated words in a Hindi speech database and also to recognize words in a benchmark database TI-20 in clean and noisy environment.A recognition rate of 81.5%for Hindi database and 92.2%for TI-20 database has been achieved using proposed technique.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分