Equivalent Characterization of Centralizers on B(H)
Equivalent Characterization of Centralizers on B(H)作者机构:Department of Mathematics Taiyuan University of Technology Taiyuan 030024 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2016年第32卷第9期
页 面:1113-1120页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by National Natural Foundation of China(Grant No.11001194) Provincial International Cooperation Project of Shanxi(Grant No.2014081027–2)
主 题:Centralizers full-centralized points von Neumann algebras nest algebras
摘 要:Let H be a Hilbert space with dimH ≥2 and Z ∈ B(H) be an arbitrary but fixed operator. In this paper we show that an additive map (I) : B(H)→ B(H) satisfies Ф(AB) = Ф(A)B = AФ(B) for any A, B ∈ B(H) with AB = Z if and only if Ф(AB) = Ф(A)B = AФ(B), A, B ∈ B(H), that is, (I) is a centralizer. Similar results are obtained for Hilbert space nest algebras. In addition, we show that Ф(A2) = AФ(A) = Ф(A)A for any A ∈ B(H) with A2 = 0 if and only if Ф(A) = AФ(I) = Ф(I)A, A ∈ B(H), and generalize main results in Linear Algebra and its Application, 450, 243-249 (2014) to infinite dimensional case. New equivalent characterization of centralizers on B(H) is obtained.