Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures
Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures作者机构:Department of Orthopaedic Surgery Medical College of Wisconsin Milwaukee WI USA Orthopaedic & Rehabilitation Engineering CenterMarquette University Milwaukee WI USA
出 版 物:《Bone Research》 (骨研究(英文版))
年 卷 期:2014年第2卷第2期
页 面:131-135页
核心收录:
学科分类:0710[理学-生物学] 1002[医学-临床医学] 1001[医学-基础医学(可授医学、理学学位)] 100210[医学-外科学(含:普外、骨外、泌尿外、胸心外、神外、整形、烧伤、野战外)] 10[医学]
主 题:Stability of unicortical locked fixation versus bicortical non locked fixation for forearm fractures
摘 要:Locking plate fixation is being widely applied for fixation of forearm fractures and has many potential advantages, such as fixed angle fixation and improved construct stability, especially in osteoporotic bone. Biomechanical data comparing locking devices to commonly used Low Contact Dynamic Compression (LCDCP) plates for the fixation of forearm fractures has been lacking. The purpose of this study was to compare the fixation stability of a 3.5-mm unicortical locked plate with bicortical non-locked LCDCP plates. Six matched pairs of fresh frozen cadaveric forearms were randomly assigned to unicortical locked and bicortical unlocked groups. Non-destructive four-point bending and torsional test was performed on the ulna and radius separately, using a servohydraulic testing system to obtain construct stiffness of the intact specimens and specimens after osteotomy and plating. The specimens were then loaded to failure to test the fixation strength. The locked unicortical fixation showed significantly higher bending stiffness than the unlocked bicortical fixation, but with significantly lower stiffness and strength in torsion. Fixation strength was comparable between the two groups under bending, but significantly greater in the bicortical non-locked group under torsion. Findings from this study suggest that postoperative rehabilitation protocols may need modification to limit torsional loading in the early stage when using locked unicortical fixation. The study also points out the potential advantage of a hybrid fixation that combines locked unicortical and unlocked bicortical screws.