基于感知深度神经网络的视觉跟踪
Robust Visual Tracking via Perceptive Deep Neural Network作者机构:空军工程大学信息与导航学院西安710077
出 版 物:《电子与信息学报》 (Journal of Electronics & Information Technology)
年 卷 期:2016年第38卷第7期
页 面:1616-1623页
核心收录:
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程]
基 金:国家自然科学基金(61175029 61473309) 陕西省自然科学基金(2015JM6269 2015JM6269 2016JM6050)~~
摘 要:视觉跟踪系统中,高效的特征表达是决定跟踪鲁棒性的关键,而多线索融合是解决复杂跟踪问题的有效手段。该文首先提出一种基于多网络并行、自适应触发的感知深度神经网络;然后,建立一个基于深度学习的、多线索融合的分块目标模型。目标分块的实现成倍地减少了网络输入的维度,从而大幅降低了网络训练时的计算复杂度;在跟踪过程中,模型能够根据各子块的置信度动态调整权重,提高对目标姿态变化、光照变化、遮挡等复杂情况的适应性。在大量的测试数据上进行了实验,通过对跟踪结果进行定性和定量分析表明,所提出算法具有很强的鲁棒性,能够比较稳定地跟踪目标。