PLANE WAVES NUMERICAL STABILITY OF SOME EXPLICIT EXPONENTIAL METHODS FOR CUBIC SCHRODINGER EQUATION
PLANE WAVES NUMERICAL STABILITY OF SOME EXPLICIT EXPONENTIAL METHODS FOR CUBIC SCHRODINGER EQUATION作者机构:Departamento de Matemdtica Aplicada Universidad de Valladolid IMUVA Paseo de Beldn 7 47011 VaUadolid Spain Departamento de Matemdtica Aplicada Universidad de Valladolid IMUVA Paseo de Beldn 7 47011 Valladolid Spain
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2016年第34卷第4期
页 面:385-406页
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 07[理学] 070205[理学-凝聚态物理] 08[工学] 070102[理学-计算数学] 0701[理学-数学] 0702[理学-物理学]
主 题:Numerical stability Exponential splitting Lawson methods Projection ontoinvariant quantities Plane waves SchrSdinger equation.
摘 要:Numerical stability when integrating plane waves of cubic SchrSdinger equation is thor- oughly analysed for some explicit exponential methods. We center on the following second- order methods: Strang splitting and Lawson method based on a one-parameter family of 2-stage 2nd-order explicit Runge-Kutta methods. Regions of stability are plotted and numerical results are shown which corroborate the theoretical results. Besides, a tech- nique is suggested to avoid the possible numerical instabilities which do not correspond to continuous ones.