Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy
为一个分离联合 KdV 类型方程层次的 Hamiltonian 结构和 Integrability作者机构:Department of MathematicsShanghai Jiao Tong University800 Dongchuan RoadShanghai 200240 Science and Literature SectionShijiazhuang Mechanized Infantry AcademyShijiazhuang 050083
出 版 物:《Chinese Physics Letters》 (中国物理快报(英文版))
年 卷 期:2011年第28卷第5期
页 面:4-7页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Supported by the National Natural Science Foundation of China under Grant No 10971136 also in part by the Ministry of Education and Science of Spain under Contract No MTM2009-12670
主 题:equation Hamiltonian Liouville
摘 要:Coupled Korteweg-de Vries(KdV)systems have many important physical *** considering a 4×4spectral problem,we derive a discrete coupled KdV-type equation *** hierarchy includes the coupled Volterra system proposed by Lou et al.(e-print arXiv:0711.0420)as the first member which is a discrete version of the coupled KdV *** also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy.