咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Exploiting remote learners in ... 收藏

Exploiting remote learners in Internet environment with agents

Exploiting remote learners in Internet environment with agents

作     者:LI Ming, WANG Wei & ZHOU ZhiHua National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China 

作者机构:National Key Laboratory for Novel Software Technology Nanjing University Nanjing China 

出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))

年 卷 期:2010年第53卷第1期

页      面:64-76页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Natural Science Foundation of China (Grant Nos. 60635030,60721002) Jiangsu Science Foundation (Grant No. BK2008018) 

主  题:machine learning data mining aggregative-learning mobile agent Internet environment 

摘      要:Data in the Internet are scattered on different sites indeliberately, and accumulated and updated frequently but not synchronously. It is infeasible to collect all the data together to train a global learner for prediction; even exchanging learners trained on different sites is costly. In this paper, aggregative-learning is proposed. In this paradigm, every site maintains a local learner trained from its own data. Upon receiving a request for prediction, an aggregative-learner at a local site activates and sends out many mobile agents taking the request to potential remote learners. The prediction of the aggregative-learner is made by combining the local prediction and the responses brought back by the agents. Theoretical analysis and simulation experiments show the superiority of the proposed method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分