咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bipartite entanglement in spin... 收藏

Bipartite entanglement in spin-1/2 Heisenberg model

Bipartite entanglement in spin-1/2 Heisenberg model

作     者:胡明亮 田东平 

作者机构:Department of Applied Mathematics and Applied PhysicsXi'an Institute of Posts and Telecommunications 

出 版 物:《Chinese Physics C》 (中国物理C(英文版))

年 卷 期:2008年第32卷第4期

页      面:303-307页

核心收录:

学科分类:0709[理学-地质学] 08[工学] 0708[理学-地球物理学] 0804[工学-仪器科学与技术] 0827[工学-核科学与技术] 0703[理学-化学] 0704[理学-天文学] 0702[理学-物理学] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Natural Science Foundation of China(10547008) 

主  题:Heisenberg model bipartite entanglement negativity 

摘      要:The bipartite entanglement of the two- and three-spin Heisenberg model was investigated by using the concept of negativity. It is found that for the ground-state entanglement of the two-spin model, the negativity always decreases as B increases if △ 〈γ- 1, and it may keep a steady value of 0.5 in the region of B 〈 J[(△+ 1)2 -γ^2]^1/2 if △ 〉γ-1, while for that of the three-spin model, the negativity exhibits square wave structures if γ=0 or△=0. For thermal states, there are two areas showing entanglement, namely, the main region and the sub-region. The main region exists only when △ 〉 △c (△c =γ- 1 and (γ^2 - 1)/2 for the 2- and 3-spin model respectively) and extends in terms of B and T as A increases, while the sub-region survives only when γ≠0 and shrinks in terms of B and T as △ increases.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分