ASYMPTOTIC STABILITY OF SOLUTION TO THE INITIAL-BOUNDARY VALUE PROBLEM FOR SCALAR VISCOUS CONSERVATION LAWS CORRESPONDING TO RAREFACTION WAVES
ASYMPTOTIC STABILITY OF SOLUTION TO THE INITIAL-BOUNDARY VALUE PROBLEM FOR SCALAR VISCOUS CONSERVATION LAWS CORRESPONDING TO RAREFACTION WAVES作者机构:暨南大学数学系 广东 广州 510632 广西大学数学和信息科学系 广西 南宁 530004
出 版 物:《Systems Science and Mathematical Sciences》 (SYSTEMS SCIENCE AND MATHEMATICAL SCIENCES)
年 卷 期:1999年第12卷第4期
页 面:366-377页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Viscous conservation law rarefaction wave asymptotic stability boundary.
摘 要:This paper is concerned with the asymptotic behaviors of solutions of thegeneral initial-boundary value problem to scalar viscous conservation law uxx on R+ with the conditions u(0, t) = u-(t) u-(t ),u(x,0) = u0(x) u+(x-), where f(u) 0 for all u under consideration, u- 0 admits the rarefaction wave. Ourproblem is divided into five cases depending on the signs of the characteristic speeds of the boundary state u- at t= and the far field state u+ = u(+). Both the globalexistence of the solution and the asymptotic stability are shown in all cases.