Derivatives of Meromorphic Functions with Multiple Zeros and Elliptic Functions
Derivatives of Meromorphic Functions with Multiple Zeros and Elliptic Functions作者机构:Department of Mathematics East China Normal University College of Mathematics Chengdu University of Information Technology Department of Mathematics Bar-Ilan University
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2013年第29卷第7期
页 面:1257-1278页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by the Israel Science Foundation (Grant No. 395/2007)
主 题:Normal family elliptic function
摘 要:Let f be a nonconstant meromorphic function in the plane and h be a nonconstant elliptic function. We show that if all zeros of f are multiple except finitely many and T(r, h) = 0{T(r, f)} as r → ∞, then f′ = h has infinitely many solutions (including poles).