EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS
EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS作者机构:Institut fur Mathematik Humboldt-Universitiit zu Berlin Unter den Linden 6 10099 Berlin Germany Department of Computational Science and Engineering Yonsei University 120-749 Seoul Korea Institut fur Mathematik Humboldt-Universitat zu Berlin Unter den Linden 6 10099 Berlin Germany Yonsei School of Business and Department of Computational Science and Engineering Yonsei University 120-749 Seoul Korea
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2012年第30卷第4期
页 面:337-353页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported in parts by the DFG graduated school BMS "Berlin Mathematical School" the DFG Research Center MATHEON "Mathematics for key technologies" in Berlin funded by the Ministry of Education, Science and Technology the National Research Foundation of Korea (NRF) supported by the World Class University (WCU) program
主 题:Error estimates Conforming Nonconforming Mixed Finite element method.
摘 要:The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and P^viart-Thomas mixed finite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.