An Improvement of the Hardy-Hilbert Type Integral Inequalities and an Application
An Improvement of the Hardy-Hilbert Type Integral Inequalities and an Application作者机构:Department of Mathematics and Computer Science Jishou University Jishou 416000 China Department of Mathematics and Computer Science Normal College Jishou University Jishou 416000 China
出 版 物:《Chinese Quarterly Journal of Mathematics》 (数学季刊(英文版))
年 卷 期:2007年第22卷第1期
页 面:68-74页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Hardy-Hilbert's type inequality Hardy-Littlewood's inequality Hoelder's inequality beta function
摘 要:In this paper, it is shown that Hardy-Hilbert's integral inequality with parameter is improved by means of a sharpening of Hoeder's inequality. A new inequality is established as follows:∫^∞α∫^∞α f(x)g(y)/(x+y+2β)dxdy 〈π/sin(π/p){∫^∞α f^p(x)dx}1/p·{∫^∞αgq(x)dx}1/q·(1-R)^m,where R=(Sp (F, h) - Sq (G, h))^2, m= min (1/p, 1/q). As application; an extension of Hardy-Littlewood's inequality is given.