GENERATING EXACT NONLINEAR RANKING FUNCTIONS BY SYMBOLIC-NUMERIC HYBRID METHOD
GENERATING EXACT NONLINEAR RANKING FUNCTIONS BY SYMBOLIC-NUMERIC HYBRID METHOD作者机构:School of Mathematical SciencesGraduate University of Chinese Academy of Sciences Shanghai Key Laboratory of Trustworthy ComputingEast China Normal University
出 版 物:《Journal of Systems Science & Complexity》 (系统科学与复杂性学报(英文版))
年 卷 期:2013年第26卷第2期
页 面:291-301页
核心收录:
学科分类:080904[工学-电磁场与微波技术] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported in part by the National Natural Science Foundation of China under Grant Nos.10901055,61021004,91118007 by NKBRPC 2011CB302802,2011CB70690 by the Fundamental Research Funds for the Central Universities under Grant No.78210043
主 题:Program verification ranking function semidefinite programming symbolic-numeric hybrid method.
摘 要:This paper presents a hybrid symbolic-numeric algorithm to compute ranking functions for establishing the termination of loop programs with polynomial guards and polynomial *** authors first transform the problem into a parameterized polynomial optimization problem,and obtain a numerical ranking function using polynomial sum-of-squares relaxation via semidefinite programming(SDP).A rational vector recovery algorithm is deployed to recover a rational polynomial from the numerical ranking function,and some symbolic computation techniques are used to certify that this polynomial is an exact ranking function of the loop *** last,the authors demonstrate on some polynomial loop programs from the literature that our algorithm successfully yields nonlinear ranking functions with rational coefficients.