基于实例白化与特征恢复的草莓病害识别领域泛化方法
作者机构:安徽理工大学人工智能学院 中国科学院合肥物质科学研究院
出 版 物:《智慧农业(中英文)》 (Smart Agriculture)
年 卷 期:2025年
核心收录:
学科分类:12[管理学] 08[工学] 09[农学] 090401[农学-植物病理学] 090402[农学-农业昆虫与害虫防治] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 080203[工学-机械设计及理论] 0904[农学-植物保护] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:安徽理工大学高层次引进人才科研启动基金(2024yjrc05) 国家自然科学基金(62003001) 安徽理工大学校级重点项目(XCZX2021-01)
主 题:深度神经网络 草莓病害识别 实例白化 特征恢复 领域泛化
摘 要:[目的/意意义义]基于深度神经网络的草莓病害识别模型通常假设训练集(源域)和测试集(目标域)满足独立同分布。然而,在实际应用中由于光照、背景环境和草莓品种等多种因素的影响,测试集与训练集存在领域差异,造成模型在应用过程中的识别精度出现明显下降。针对这一问题,本研究提出一种基于实例白化与特征恢复的领域泛化方法,用于提升草莓病害识别模型的泛化性能。[方法]该方法首先利用实例白化技术消除源域和目标域间的风格差异,再从滤除的风格特征中提取任务相关特征,最后将任务相关特征恢复到白化后的特征中,以减轻实例白化对特征类别区分度的影响。为增强从风格特征中分离任务相关特征的效果,设计了两个特征提取器分别提取任务相关和任务无关特征,并采用双段恢复损失约束两特征提取器所提取特征与任务的相关性,引入互信息损失确保特征的相互独立,进一步增强特征分类效果。[结果和讨论]该方法可以在不降低源域识别精度的前提下,有效提升各病害识别模型在目标域上的泛化性能,如AlexNet加入该算法后,其不同风格目标域上的识别精度可分别提升3.97个百分点和2.79个百分点。相较于IBN-Net (Instance Batch Normalization Net)、可切换白化(Switchable Whitening, SW)、样式归一化和恢复模块(Style Normalization and Restitution, SNR)等其他领域泛化方法,该算法在测试数据集上的泛化性能可分别提高2.63%、2.35%和1.14%。[结结论论]本方法可有效提升基于深度学习的草莓病害识别模型在目标域中的泛化性能,可为草莓病害精准识别提供可靠的技术支撑。