MODIFIED BRASCAMP-LIEB INEQUALITIES AND LOG-SOBOLEV INEQUALITIES FOR ONE-DIMENSIONAL LOG-CONCAVE MEASURE
作者机构:College of ScienceNorthwest A&F UniversityYangling712100China School of Mathematics and Big DataGuizhou Education UniversityGuiyang550018China
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2025年第45卷第1期
页 面:104-117页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Supported in part by the NSFC(12071378,12461009) the Natural Science Basic Research Program of Shaanxi(2023-JC-YB-036) the Shaanxi Fundamental Science Research Project for Mathematics and Physics(23JSQ033)
主 题:Brunn-Minkowski inequality Prékopa-Leindler inequality Brascamp-Lieb inequality log-Sobolev inequality log-concave measure
摘 要:In this paper,we develop Maurey’s and Bobkov-Ledoux’s methods to prove modified Brascamp-Lieb inequalities and log-Sobolev inequalities for one-dimensional log-concave *** prove these inequalities,the harmonic Prékopa-Leindler inequality is *** prove that these new inequalities are more efficient in estimating the variance and entropy for some functions with exponential terms.