基于粒子群算法的社会网络k-度匿名图修改方法
作者机构:齐齐哈尔大学计算机与控制工程学院
出 版 物:《齐齐哈尔大学学报(自然科学版)》 (Journal of Qiqihar University(Natural Science Edition))
年 卷 期:2025年
页 面:1-9页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0839[工学-网络空间安全] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 081201[工学-计算机系统结构] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:黑龙江省省属高等学校基本科研业务费科研项目(145209124)
摘 要:针对当前社会网络的匿名化隐私保护方法存在信息损失量大,忽略社会网络的结构等问题,提出一种保护社会网络社区结构的基于粒子群算法的k-度匿名方法。首先,使用贪婪算法对社会网络图的节点进行划分,得到节点欲达成k-度匿名所需增加的度数序列;其次,引入社区发现,减少图结构的损失;最后,基于粒子群算法对图进行边添加,满足k-度匿名。实验使用平均路径长度、平均聚类系数和传递性作为评价指标,在3个数据集上对提出的方法进行实验测试。结果表明,该方法能抵御度属性的攻击,较好地保护了网络图的社区结构,同时降低了图的信息损失量。