基于多尺度时频域学习的多元长时间序列预测
作者机构:中国民航大学计算机科学与技术学院
出 版 物:《西安电子科技大学学报》 (Journal of Xidian University)
年 卷 期:2025年
核心收录:
学科分类:12[管理学] 02[经济学] 07[理学] 08[工学] 070103[理学-概率论与数理统计] 0202[经济学-应用经济学] 020208[经济学-统计学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 0714[理学-统计学(可授理学、经济学学位)] 0835[工学-软件工程] 0701[理学-数学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:预测 时间序列 时频域 多尺度 序列分解 多层感知机
摘 要:针对现有多元长时间序列预测模型中存在的两个问题,一是仅利用单周期尺度时域信息无法捕捉序列的长期时间依赖关系,二是难以捕捉到有效的多元依赖关系。基于多层感知机,提出了一种基于多尺度时频域学习的多元长时间序列预测模型。模型首先基于傅里叶变换自适应寻找序列的不同周期作为多个尺度;然后针对每个尺度,通过序列分解,分别进行时域和频域两阶段的学习,获取序列的局部和全局时间依赖关系;随后再依据变量间的相关性分析结果,自适应建模多元序列的变量依赖关系;最后,对各尺度中不同的序列分解项应用不同的聚合方法,实现多尺度信息的互补融合。在七个真实数据集上的实验表明,该模型在超过90%的测试中位于最优或次优水平。与基于序列分解的线性模型DLinear相比,MSE实现了11%的平均降低和49.22%的最大降低,MAE实现了10%的平均降低和33.03%的最大降低。此外,模型在有效提升预测精度的同时,具有更高的运行效率。