咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Text-Image Feature Fine-Graine... 收藏

Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis

作     者:Tianzhi Zhang Gang Zhou Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 

作者机构:School of Data and Target EngineeringInformation Engineering UniversityZhengzhou450001China Information Engineering DepartmentLiaoning Provincial College of CommunicationsShenyang110122China School of Computer and Artificial IntelligenceZhengzhou UniversityZhengzhou450000China 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2025年第82卷第1期

页      面:279-305页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the Science and Technology Project of Henan Province(No.222102210081) 

主  题:Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs 

摘      要:Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal *** this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for ***,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect ***,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature ***,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and *** on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分