一种基于多尺度的多层卷积稀疏编码网络
A Multi-layer Convolutional Sparse Coding Network Based on Multi-Scale作者机构:广东工业大学信息工程学院广东广州510006
出 版 物:《广东工业大学学报》 (Journal of Guangdong University of Technology)
年 卷 期:2024年第41卷第6期
页 面:125-132页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:多层卷积稀疏编码模型(Multi-layer Convolutional Sparse Coding, ML-CSC)被认为是对卷积神经网络(Convolutional Neural Networks, CNN)的一种理论阐释。尽管ML-CSC模型在特征对比度高的数据集上表现良好,但是其在特征对比度低的数据集上表现不佳。为了解决这一问题,本文引入多尺度技术设计了一种多尺度多层卷积稀疏编码网络(Multi-scale Multi-layer Convolutional Sparse Coding Network, MSMCSCNet),不仅在特征对比度较弱的情况下得到更好的图像分类效果,而且也使模型具有扎实的理论基础和较高的可解释性。实验结果表明,MSMCSCNet在不增加参数量的前提下,在Cifar10、Cifar100数据集和Imagenet32数据子集上,准确率相比现有MLCSC模型分别提高了5.75,9.75和9.8个百分点。此外,消融实验进一步证实了模型的多尺度设计和特征筛选模式设计的有效性。