改进YOLOv8n的无人机航拍图像检测算法
A UAV Aerial Image Detection Algorithm Based on Improved YOLOv8n作者机构:华北理工大学电气工程学院河北唐山063000
出 版 物:《电光与控制》 (Electronics Optics & Control)
年 卷 期:2025年第32卷第1期
页 面:34-40,67页
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程]
基 金:河北省自然科学基金(F2018209289) 河北省教育厅科学研究项目资助(QN2024147) 华北理工大学研究生创新项目(2024S05,2024S08)
主 题:无人机图像 YOLOv8n 注意力机制 可变形卷积 WIoU
摘 要:针对无人机航拍图像中目标小、尺度变化大和背景干扰等因素导致检测精度低、定位不准确的问题,提出一种改进YOLOv8n的无人机航拍图像目标检测算法。首先改进C2f模块,利用可变形卷积(DCN)替换其Bottleneck中的卷积以适应航拍图像中物体的形变和尺度变化,同时,在主干网络引入LSK注意力机制,实现动态调整空间感受野,从而在特征提取阶段更灵活地适应不同目标对背景信息需求的差异;然后改进颈部网络,增加一个较浅的检测层并移除大目标检测层,使网络能更有效地捕获小目标的特征以提升检测精度;最后引入WIoU损失函数,使模型更加关注低质量样本,得到更高的检测精度。在VisDrone2019数据集上进行对比实验和消融实验,mAP_(50)值较基线算法模型提升了5.2个百分点,参数量减少了20%,检测速度(FPS)达到87帧/s,能够满足实时性的检测需求。与主流算法进行对比实验,所提算法表现优于目前的主流算法。在DOTA数据集上进行泛化实验,mAP_(50)值提升了1.7个百分点,证明所提算法具有通用性。