Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms
Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms作者机构:School of MathematicsSichuan UniversityChengdu 610064China School of ScienceChongqing Jiaotong UniversityChongqiong 400047China Yangtze Center of MathematicsSichuan UniversityChengdu 610064China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2008年第51卷第8期
页 面:1440-1460页
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
基 金:the National Natural Science Foundation of China(Grant No.10771150) the National Basic Research Program of China(Grant No.2005CB321701) the Program for New Century Excellent Talents in University(Grant No.NCET-07-0584)
主 题:Crouzeix-Raviart element nonconforming FEM a posteriori error estimator longest edge bisection 65N15 65N30 65N50
摘 要:Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source *** estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p *** other one is proved to give a global upper bound of the error in *** taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.