咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Residual-based a posteriori er... 收藏

Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms

Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms

作     者:DU ShaoHong XIE XiaoPing 

作者机构:School of MathematicsSichuan UniversityChengdu 610064China School of ScienceChongqing Jiaotong UniversityChongqiong 400047China Yangtze Center of MathematicsSichuan UniversityChengdu 610064China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2008年第51卷第8期

页      面:1440-1460页

核心收录:

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

基  金:the National Natural Science Foundation of China(Grant No.10771150) the National Basic Research Program of China(Grant No.2005CB321701) the Program for New Century Excellent Talents in University(Grant No.NCET-07-0584) 

主  题:Crouzeix-Raviart element nonconforming FEM a posteriori error estimator longest edge bisection 65N15 65N30 65N50 

摘      要:Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source *** estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p *** other one is proved to give a global upper bound of the error in *** taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分