咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Artificial Intelligence-Driven... 收藏

Artificial Intelligence-Driven FVM-ANNModel for Entropy Analysis ofMHD Natural Bioconvection in Nanofluid-Filled Porous Cavities

作     者:Noura Alsedais Mohamed Ahmed Mansour Abdelraheem M.Aly Sara I.Abdelsalam 

作者机构:Department of Mathematical SciencesCollege of SciencePrincess Nourah bint Abdulrahman UniversityRiyadh11671Saudi Arabia Mathematics DepartmentFaculty of SciencesAssiut UniversityAssiut71515Egypt Department of MathematicsCollege of ScienceKing Khalid UniversityAbha62529Saudi Arabia Basic ScienceFaculty of EngineeringThe British University in EgyptAl-Shorouk CityCairo11837Egypt Instituto de Ciencias Matemáticas ICMATCSICUAMUCMUC3MMadrid28049Spain 

出 版 物:《Frontiers in Heat and Mass Transfer》 (热量和质量传递前沿(英文))

年 卷 期:2024年第22卷第5期

页      面:1277-1307页

核心收录:

学科分类:080702[工学-热能工程] 08[工学] 0807[工学-动力工程及工程热物理] 

基  金:Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through theResearch Group Project underGrant Number(RGP.2/610/45) funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R102) PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia 

主  题:ANN model finite volume method natural bioconvection flow magnetohydrodynamics(MHD) porous media 

摘      要:The research examines fluid behavior in a porous box-shaped *** fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an *** circulation driven by biological factors is *** analysis combines a traditional numerical approach with machine learning *** equations describing the system are transformed into a dimensionless form and then solved using computational *** artificial neural network(ANN)model,trained with the Levenberg-Marquardt method,accurately predicts(Nu)values,showing high correlation(R=1),low mean squared error(MSE),and minimal error *** analysis reveals significant effects of parameters,length and location of source(B),(D),heat generation/absorption coefficient(Q),and porosity parameter(ε).Increasing the cooling area length(B)reduces streamline intensity and local Nusselt and Sherwood numbers,while decreasing isotherms,isoconcentrations,and *** Bejan number(Be+)decreases with increasing(B),whereas(Be+++),and global entropy(e+++)*** in(Q)slightly affect streamlines but reduce isotherm intensity and average Nusselt ***(D)significantly impacts isotherms,iso-concentrations,andmicro-rotation,altering streamline contours and local Bejan number ***(ε)enhances streamline strength and local Nusselt number profiles but has mixed effects on average Nusselt *** findings highlight the complex interactions between cooling area length,fluid flow,and heat transfer *** combining finite volume method(FVM)with machine learning technique,this study provides valuable insights into the complex interactions between key parameters and heat transfer,contributing to the development of more efficient designs in applications such as cooling systems,energy storage,and bioengineering.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分