Surfaces with Isotropic Blaschke Tensor in S^3
Surfaces with Isotropic Blaschke Tensor in S^3作者机构:Department of MathematicsYunnan Normal University Department of Mathematics and statisticsChuxiong Normal University
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2015年第31卷第5期
页 面:863-878页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by NSFC(Grant No.10861013)
主 题:Moebius geometry Blaschke tensor isotropic
摘 要:Abstract Let M^2 be an umbilic-free surface in the unit sphere S^3. Four basic invariants of M^2 under the Moebius transformation group of S^3 are Moebius metric g, Blaschke tensor A, Moebius second fundamental form B and Moebius form φ. We call the Blaschke tensor is isotropic if there exists a smooth function λ such that A = λg. In this paper, We classify all surfaces with isotropic Blaschke tensor in S^3.