Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrdinger operators
Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrdinger operators作者机构:School of Mathematics and PhysicsUniversity of Science and Technology Beijing College of SciencesNorth China University of Technology Department of MathematicsShanghai University
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2013年第56卷第9期
页 面:1895-1913页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:National Natural Science Foundation of China (Grant Nos. 10901018 and 11001002) the Shanghai Leading Academic Discipline Project (Grant No. J50101) the Fundamental Research Funds for the Central Universities
主 题:commutator spaces of homogeneous type stratified Lie groups admissible function Hardy space reverse Ho¨lder inequality Riesz transform Schr¨odinger operators
摘 要:Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator Tbf = bTf-T(bf) on Lp , p∈(1,∞), where T is a Calderón-Zygmund operator related to the admissible function ρ and b∈BMOθ(X)BMO(X). Moreover, they prove that Tb is bounded from the Hardy space H1ρ(X) into the weak Lebesgue space L1weak(X). This can be used to deal with the Schrdinger operators and Schrdinger type operators on the Euclidean space Rn and the sub-Laplace Schrdinger operators on the stratified Lie group G.