咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Non-gaussian Test Models for P... 收藏

Non-gaussian Test Models for Prediction and State Estimation with Model Errors

Non-gaussian Test Models for Prediction and State Estimation with Model Errors

作     者:Michal BRANICKI Nan CHEN Andrew J.MAJDA 

作者机构:Department of Mathematics and Center for Atmosphere Ocean ScienceCourant Institute of Mathematical SciencesNew York University 

出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))

年 卷 期:2013年第34卷第1期

页      面:29-64页

核心收录:

学科分类:080704[工学-流体机械及工程] 07[理学] 080103[工学-流体力学] 08[工学] 0807[工学-动力工程及工程热物理] 070102[理学-计算数学] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)] 

基  金:Project supported by the Office of Naval Research (ONR) Grants (No. ONR DRI N00014-10-1-0554) the DOD-MURI award "Physics Constrained Stochastic-Statistical Models for Extended Range Environmental Prediction" 

主  题:Prediction Model error Information theory Feynman-Kac framework Fokker planck Turbulent dynamical systems 

摘      要:Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large number of positive Lyapunov exponents. Such systems are ubiqui- tous in applications in contemporary science and engineering where the statistical ensemble prediction and the real time filtering/state estimation are needed despite the underlying complexity of the system. Statistically exactly solvable test models have a crucial role to provide firm mathematical underpinning or new algorithms for vastly more complex scien- tific phenomena. Here, a class of statistically exactly solvable non-Gaussian test models is introduced, where a generalized Feynman-Ka~ formulation reduces the exact behavior of conditional statistical moments to the solution to inhomogeneous Fokker-Planck equations modified by linear lower order coupling and source terms. This procedure is applied to a test model with hidden instabilities and is combined with information theory to address two important issues in the contemporary statistical prediction of turbulent dynamical systems: the coarse-grained ensemble prediction in a perfect model and the improving long range forecasting in imperfect models. The models discussed here should be use- ful for many other applications and algorithms for the real time prediction and the state estimation.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分