基于三维荧光光谱结合2D-LDA的食用油掺假鉴别研究
作者机构:燕山大学信息科学与工程学院计算机科学与工程系 唐山师范学院计算机科学技术系 石家庄学院机电学院
出 版 物:《光谱学与光谱分析》 (Spectroscopy and Spectral Analysis)
年 卷 期:2024年第11期
页 面:3179-3185页
核心收录:
学科分类:0832[工学-食品科学与工程(可授工学、农学学位)] 081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070302[理学-分析化学] 083202[工学-粮食、油脂及植物蛋白工程] 0703[理学-化学]
基 金:国家自然科学基金项目(62175208) 河北省高等学校科学技术研究项目(BJK2023067) 唐山市市级科技计划项目(21130212D)资助
主 题:食用油 三维荧光光谱 二维线性判别分析(2D-LDA) 掺假鉴别
摘 要:食用油掺假行为严重威胁消费者的身体健康并扰乱社会市场秩序。研究有效的食用油掺假鉴别方法对于构建安全、可靠的食品供应链和提升消费者福祉具有重要意义。以食用油中的香油为例开展食用油掺假鉴别方法研究。通过芝麻香精与玉米油、大豆油以及菜籽油三种食用油配制了3类掺假香油;使用FLS920稳态荧光光谱仪采集了这3类掺假香油以及不同品牌香油共计45个实验样本的三维荧光光谱数据;基于2D-LDA方法提取了实验样本的二维特征,并以此为依据采用最近邻分类原理实现了掺假食用油的准确鉴别。将所述方法与平行因子结合非线性判别分析(PARAFAC-QDA)、多维偏最小二乘——判别分析(NPLS-DA)两种方法进行了对比。结果表明,2D-LDA方法能够有效提取掺假香油的二维特征。这些特征能够使不同类别的实验样本在投影子空间中实现最大程度分离;同时可使相同类别的实验样本在子空间中尽可能地紧密聚集,进而使得样本在低维子空间中具有更好的可分性,从而获得了100%的鉴别准确率。而PARAFAC-QDA和NPLS-DA两种方法仅分别获得了85%和95%的鉴别准确率。2D-LDA方法相比于这两种方法在食用油掺假鉴别特别是现场快速检测的实际应用中更具优势和潜力,其鉴别过程与结果更加简捷和精确。研究为现场食品安全监管提供了一种高效可行的新方案。