咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Hybrid particle swarm optimiza... 收藏

Hybrid particle swarm optimization for multiobjective resource allocation

Hybrid particle swarm optimization for multiobjective resource allocation

作     者:Yi Yang Li Xiaoxing Gu Chunqin 

作者机构:Computer Science Dept. Sun Yat-sen Univ. Guangzhou 510275 P. R. China 

出 版 物:《Journal of Systems Engineering and Electronics》 (系统工程与电子技术(英文版))

年 卷 期:2008年第19卷第5期

页      面:959-964页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:the National Natural Science Foundation of China (60573159) 

主  题:resource allocation multiobjective optimization improved particle swarm optimization. 

摘      要:Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals, such a.s maximizing the profits, minimizing the costs, or achieving the best qualities. A complex multiobjective RA is addressed, and a multiobjective mathematical model is used to find solutions efficiently. Then, all improved particie swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation. Meanwhile, a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented. The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分