NUMERICAL SOLUTION OF 2-D INCOMPRESSIBLE VISCOUS FLOW WITH HIGH ORDER COMPACT SCHEME USING DOMAIN DECOMPOSITION AND MATCHED METHOD
NUMERICAL SOLUTION OF 2-D INCOMPRESSIBLE VISCOUS FLOW WITH HIGH ORDER COMPACT SCHEME USING DOMAIN DECOMPOSITION AND MATCHED METHOD作者机构:Dept. of Mech. Zhejiang Univ. Hangzhou 310027 China
出 版 物:《Journal of Hydrodynamics》 (水动力学研究与进展B辑(英文版))
年 卷 期:2001年第13卷第4期
页 面:79-82页
核心收录:
学科分类:080704[工学-流体机械及工程] 080103[工学-流体力学] 08[工学] 0807[工学-动力工程及工程热物理] 0801[工学-力学(可授工学、理学学位)]
主 题:Computational fluid dynamics Computational methods Incompressible flow Navier Stokes equations
摘 要:This paper presents a high-accuracy method for solving 2-D incompressible viscous N-S equations in tensor forms. A domain decomposition method was used to divide the computational domain into several regular blocks with the overlapping grid in order to transfer data between sub-domains and to remove numerical singularity caused by domain decomposition. Using the method and algorithm presented above, the flow passing an ellipse was computed and the formation and evolution of the vortex shedding was successfully simulated.