基于小波分析的大豆叶面积高光谱反演
Wavelet transformation of in-situ measured hyperspectral data in Glycine max LAI estimation作者机构:中国科学院东北地理与农业生态研究所长春130012
出 版 物:《生态学杂志》 (Chinese Journal of Ecology)
年 卷 期:2007年第26卷第10期
页 面:1690-1696页
核心收录:
基 金:中国科学院知识创新工程重要方向项目(KZCX3-SW-356) 长春净月潭遥感实验站基金资助项目
摘 要:实测了不同水肥耦合、经营制度及有效营养面积条件下的大豆(Glycinemax)冠层高光谱反射率与叶面积指数(LAI),并对光谱反射率、微分光谱与LAI的关系进行了分析;采用比值植被指数(RVI)与归一化植被指数(NDVI)建立了大豆LAI反演模型;采用小波分析对采集的光谱反射率数据进行了能量系数提取,并以小波能量系数作为自变量进行了单变量与多变量回归分析,对大豆LAI进行估算。结果表明:大豆LAI与光谱反射率在可见光波段呈负相关;在近红外波段呈正相关;微分光谱在红边处与大豆LAI密切相关(R2=0.92);RVI与NDVI可以提高大豆LAI的估算精度(R2分别达0.79、0.84);各植被指数各有优缺点,应根据需要进行选择;小波能量系数回归模型可以进一步提高大豆叶面积的估算水平,以一个特定小波能量系数作为自变量的回归模型,大豆LAI回归确定系数R2高达0.884;以4个和6个小波能量系数建立LAI回归分析模型(R2分别达0.92、0.93),2个模型LAI预测值与大豆LAI实测值线性回归确定性系数R2分别为0.90、0.92。比较可知,小波分析可以对高光谱进行特征变量提取,进而反演大豆生理参数,并且反演的LAI精度较光谱反射率、微分光谱及植被指数都有明显提高,小波分析在植被生理参数的高光谱提取方面有着广阔的应用前景。