TWO IMPROVED ALGORITHMS AND IMPLEMENTATION FOR A SINGULARLY PERTURBED PROBLEM ON MOVING MESHES
TWO IMPROVED ALGORITHMS AND IMPLEMENTATION FOR A SINGULARLY PERTURBED PROBLEM ON MOVING MESHES作者机构:School of Mathematics Hunan International Economics University Changsha 410205 China School of Mathematical Sciences South China Normal University Guangzhou 510631 China School of Mathematics and Computational Science Xiangtan University Xiangtan 411105 China
出 版 物:《Journal of Systems Science & Complexity》 (系统科学与复杂性学报(英文版))
年 卷 期:2011年第24卷第6期
页 面:1232-1240页
核心收录:
学科分类:080703[工学-动力机械及工程] 080704[工学-流体机械及工程] 07[理学] 08[工学] 0807[工学-动力工程及工程热物理] 070104[理学-应用数学] 0701[理学-数学]
基 金:This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University Guang- dong Province Universities and Colleges Pearl River Scholar Funded Scheme (2008) and the National Natural Science Foundation of China under Grant No. 10971074
主 题:Algorithm equidistribution principle moving mesh method Richardson extrapolation singularly perturbed problem.
摘 要:This paper applies a difference scheme to a singularly perturbed problem. The authors provide two algorithms on moving mesh methods by using Richardson extrapolation which can improve the accuracy of numerical solution. In traditional algorithms of moving meshes, the initial mesh is a uniform mesh. The authors change it to Bakhvalov-Shishkin mesh, and prove that it improves efficiency by numerical experiments. Finally, the results of the two algorithms are analyzed.