强收敛意义下岭回归的 C_L 和 GCV 准则的渐近最优性
ASYMPTOTIC OPTIMALITY OF RIDGE PARAMETERS BASED ON C_L AND GCV PROCEDURES WITH RESPECT TO STRONG CONVERGENCE作者机构:安徽大学数学系合肥230039
出 版 物:《系统科学与数学》 (Journal of Systems Science and Mathematical Sciences)
年 卷 期:1992年第12卷第2期
页 面:109-117页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:国家自然科学基金
摘 要:设有回归模型Y_i=μ_i+e_i,i=1,2,…,n (1)假定 e_1,…,e_n 为 iid.的正态随机变量序列,具有共同的均值0和方差σ~2.每个 Y_i 可通过设计点列 x_(i1),x_(i2),…,x_i_p_n 观察到.为估计 Y=(Y_1,…,Y_n)′的未知均值 μ=(μ_1,…,μ_n)′,可构造一族岭估计(?)(h)=X(X′X+hI)^-1X′Y,h≥0,(2)其中 X=(x_ij)_(n×ρn) 为设计阵,I 为 p_n 阶单位阵.在这里,岭参数 h