Origin of Taiwan Canyon and its effects on deepwater sediment
Origin of Taiwan Canyon and its effects on deepwater sediment作者机构:College of Geosciences China University of Petroleum State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum Guangzhou Marine Geological Survey Bureau
出 版 物:《Science China Earth Sciences》 (中国科学(地球科学英文版))
年 卷 期:2014年第57卷第9期
页 面:2769-2780页
核心收录:
学科分类:070704[理学-海洋地质] 0709[理学-地质学] 07[理学] 0707[理学-海洋科学]
基 金:supported by National Natural Science Foundation of China(Grant Nos.41372115 40972077)
主 题:deepwater sediment gravity flow sediment waves Taiwan Canyon morphology
摘 要:The continental slope of the Taiwan Shoal, which has cultivated numerous submarine canyons, is located in a passive conti- nental margin environment. However, the trend of the Taiwan Canyon, with its 45° intersection angle, is obviously different from that of the erosion valley downward along the continental slope. A distinct break is present in the lower segment of the Taiwan Canyon, which then extends from west to east parallel to the continental slope until finally joining the Manila Trench. By utilizing multiple-beam water depth data, high-resolution seismic data, and sediment cores, this study describes the topo- graphic characteristics of the Taiwan Canyon and provides a preliminary discussion on the origin of the Taiwan Canyon and its effect on deepwater sediment. The terrain, landform, and sediment of the Taiwan Canyon exhibit segmentation characteristics. The upper segment is characterized primarily by erosion, downward cutting with a V shape, and wide development of sliding, slumping, and other gravity flow types. The middle segment is characterized mostly by U-shaped erosion-sedimentation transi- tion and development of an inner levee. The lower segment is characterized primarily by sedimentation and development of a sediment wave. The bottom current has a significant reworking effect on the interior sediments of the canyon and forms re- worked sands. The formation and evolution of the Taiwan Canyon is closely related to sediment supply, gravity sliding (slumping), faulting activities, and submarine impaling. Given the sufficient terrigenous clastic supply, the sediments along the continental shelf edge continuously proceed seaward; gliding and slumping in the front edge provide driving forces for the formation of the canyon. Faulting activities result in stratum crushing, and the gravity flow takes priority in eroding the relatively fragile stratum. Thus, the direction of the extension of the canyon crosses the surrounding erosion valley obliquely. Seamo