咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Z_2-Equivariant Cubic System W... 收藏

Z_2-Equivariant Cubic System Which Yields 13 Limit Cycles

Z_2-Equivariant Cubic System Which Yields 13 Limit Cycles

作     者:Yi-rong LIU Ji-bin LI 

作者机构:School of MathematicsCentral South University Department of MathematicsZhejiang Normal University School of ScienceKunming University of Science and Technology 

出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))

年 卷 期:2014年第30卷第3期

页      面:781-800页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by the National Natural Science Foundation of China(No.11371373 and 10831003) 

主  题:planar dynamical system limit cycles bifurcations Lyapnov constant weak focus 

摘      要:For the planar Z2-equivariant cubic systems having two elementary focuses, the characterization of a bi-center problem and shortened expressions of the first six Lyapunov constants are completely solved. The necessary and sufficient conditions for the existence of the bi-center are obtained. On the basis of this work, in this paper, we show that under small Z2-equivariant cubic perturbations, this cubic system has at least 13 limit cycles with the scheme 1 6 ∪ 6.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分