A family of transitive modular Lie superalgebras with depth one
A family of transitive modular Lie superalgebras with depth one作者机构:Department of Mathematics Harbin Normal University Harbin China Department of Mathematics Northeast Normal University Changchun China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2007年第50卷第10期
页 面:1451-1466页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:This work is partially supported by the National Natural Science Foundation of China(Grant No.10671160) China Postdoctoral Science Foundation(Grant No.20060400107)
主 题:flag, divided power algebra, modular Lie superalgebra, embedding theorem
摘 要:The embedding theorem is established for Z-graded transitive modular Lie superalgebras g■■■(g-1)satisfying the conditions: (i)g0■■(g-1) and g0-module g-1 is isomorphic to the natural■(g-1)-module; (ii)dim g1=2/3n(2n^2+1),where n=1/2dim g-1. In particular,it is proved that the finite-dimensional simple modular Lie superalgebras satisfying the conditions above are isomorphic to the odd Hamiltonian *** restricted Lie superalgebras are also considered.