咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cross-Target Stance Detection ... 收藏

Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

作     者:Kelan Ren Facheng Yan Honghua Chen Wen Jiang Bin Wei Mingshu Zhang 

作者机构:College of Cryptographic EngineeringEngineering University of PAPXi’an710086China 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2024年第81卷第10期

页      面:789-807页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Social Science Fund of China(20BXW101) 

主  题:Cross-target stance detection sentiment analysis commentary-level texts hierarchical attention network 

摘      要:The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language *** stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic *** paper focuses on effectively mining and utilizing sentimentsemantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network(SentiHAN)for cross-target stance *** introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various fine-grain *** model integrates phrase-level combinatorial sentiment knowledge to effectively bridge the knowledge gap between known and unknown *** doing so,it enables a comprehensive understanding of stance representations for unknown targets across different sentiments and semantic *** model’s ability to leverage sentimentsemantics knowledge enhances its performance in detecting stances that may not be directly observable from the immediate *** experimental results indicate that SentiHAN significantly outperforms existing benchmark methods in terms of both accuracy and ***,the paper employs ablation studies and visualization techniques to explore the intricate relationship between sentiment and *** analyses further confirm the effectiveness of sentence-level combinatorial sentiment knowledge in improving stance detection capabilities.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分