Empowering over-the-air personalized federated learning via RIS
作者机构:National Mobile Communications Research Laboratory Southeast University Purple Mountain Laboratories School of Electrical and Electronics Engineering Nanyang Technological University Research Institute China United Network Communications Corporation
出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))
年 卷 期:2024年第67卷第11期
页 面:371-372页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Natural Science Foundation of China (Grant No. 62271137) Fundamental Research Funds for the Central Universities(Grant Nos. 2242022k60002, 2242023K5003)
摘 要:Federated learning(FL) is a promising distributed learning approach due to its privacy-enhancing characteristic [1–3].To enhance communication efficiency of FL, over-the-air computation(AirComp) has emerged as a key technique by exploiting the waveform superposition property of multiple access channels [4, 5]. Although AirComp-enabled FL(AirFL) offers significant performance gains, it does not address the data heterogeneity in most real-life FL scenarios with non-independent and identically distributed local datasets.