THE DYNAMICS OF A DISCRETE SEIT MODEL WITH AGE AND INFECTION AGE STRUCTURES
THE DYNAMICS OF A DISCRETE SEIT MODEL WITH AGE AND INFECTION AGE STRUCTURES作者机构:Department of Applied Mathematics Xi' an Jiaotong University Xi'an Shaanxi 710049 P. R. China
出 版 物:《International Journal of Biomathematics》 (生物数学学报(英文版))
年 卷 期:2012年第5卷第3期
页 面:61-76页
学科分类:07[理学] 08[工学] 0835[工学-软件工程] 070202[理学-粒子物理与原子核物理] 081202[工学-计算机软件与理论] 0702[理学-物理学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Discrete epidemic model infection age structure basic reproduction number persistence.
摘 要:Age and infection age have significant influence on the transmission of infectious dis- eases, such as HIV/AIDS and TB. A discrete SEIT model with age and infection age structures is formulated to investigate the dynamics of the disease spread. The basic reproduction number R0 is defined and used as the threshold parameter to character- ize the disease extinction or persistence. It is shown that the disease-free equilibrium is globally stable if R0 〈 1, and it is unstable if R0 〉 1. When R0 〉 1, there exists an endemic equilibrium, and the disease is uniformly persistent. The stability of the endemic equilibrium is investigated numerically.