咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >CAGCN:Centrality-Aware Graph C... 收藏

CAGCN:Centrality-Aware Graph Convolution Network for Anomaly Detection in Industrial Control Systems

作     者:Jun Yang Yi-Qiang Sheng Jin-Lin Wang Hong Ni 杨骏;盛益强;王劲林;倪宏

作者机构:National Network New Media Engineering Research CenterInstitute of AcousticsChinese Academy of SciencesBeijing 100190China School of ElectronicElectrical and Communication EngineeringUniversity of Chinese Academy of SciencesBeijing 100049China 

出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))

年 卷 期:2024年第39卷第4期

页      面:967-983页

核心收录:

学科分类:07[理学] 0815[工学-水利工程] 0811[工学-控制科学与工程] 0701[理学-数学] 070101[理学-基础数学] 

基  金:supported by the Chinese Academy of Sciences through the Strategic Priority Research Program under Grant No.XDC02020400 

主  题:graph convolution network(GCN) data mining network centrality anomaly detection industrial control system 

摘      要:In industrial control systems,the utilization of deep learning based methods achieves improvements for anomaly ***,most current methods ignore the association of inner components in industrial control *** industrial control systems,an anomaly component may affect the neighboring components;therefore,the connective relationship can help us to detect anomalies *** this paper,we propose a centrality-aware graph convolution network(CAGCN)for anomaly detection in industrial control *** the traditional graph convolution network(GCN)model,we utilize the concept of centrality to enhance the ability of graph convolution networks to deal with the inner relationship in industrial control *** experiments show that compared with GCN,our CAGCN has a better ability to utilize this relationship between components in industrial control *** performances of the model are evaluated on the Secure Water Treatment(SWaT)dataset and the Water Distribution(WADI)dataset,the two most common industrial control systems datasets in the field of industrial anomaly *** experimental results show that our CAGCN achieves better results on precision,recall,and F1 score than the state-of-the-art methods.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分