A large language model-powered literature review for high-angle annular dark field imaging
作者机构:Department of Material Science and EngineeringCollege of Design and EngineeringNational University of Singapore9 Engineering Drive 1EA#03-09117575Singapore Centre for Hydrogen InnovationsNational University of SingaporeE81 Engineering Drive 3117580Singapore
出 版 物:《Chinese Physics B》 (中国物理B(英文版))
年 卷 期:2024年第33卷第9期
页 面:76-81页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 080401[工学-精密仪器及机械] 080203[工学-机械设计及理论] 0804[工学-仪器科学与技术] 0835[工学-软件工程] 0802[工学-机械工程] 0803[工学-光学工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Research Foundation(NRF)Singapore under its NRF Fellowship(Grant No.NRFNRFF11-2019-0002)
主 题:large language models high-angle annular dark field imaging deep learning
摘 要:High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through *** study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study *** findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials ***,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.