Improving reflectance estimation by BRDF-consistent region clustering
Improving reflectance estimation by BRDF-consistent region clustering作者机构:Beijing 100080 China Visual Computing Group Microsoft Research Asia
出 版 物:《Progress in Natural Science:Materials International》 (自然科学进展·国际材料(英文))
年 卷 期:2006年第16卷第3期
页 面:313-320页
核心收录:
学科分类:08[工学] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:texture shading grouping and segmentation reflectance estimation BRDF uncertainty.
摘 要:Previous studies in reflectance estimation generally require prior segmentation of an image into regions of uniform reflectance. Due to the measurement noise and limited sampling of the BRDF (bi-directional reflectance function) directions, such estimated results of reflectance are not accurate. In this paper, we propose a novel method for reducing uncertainty in reflectance estimates by merging image regions which have consistent reflectance observations. Each image region acts as a reflectance subspace, so merging of the image regions can result in subspace reduction. We propose a Bayesian segmentation framework to decrease the reflectance uncertainty by using novel merging criteria. Finally, a maximum likelihood reflectance estimation is made for each resulting image region. Experimental results verify the feasibility and superiority of this reflectance-oriented region merging method.