咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Artificial rabbit optimization... 收藏

Artificial rabbit optimization algorithm based on chaotic mapping and Levy flight improvement

作     者:Wu Jin Su Zhengdong Gao Yaqiong Feng Haoran Wu Jin;Su Zhengdong;Gao Yaqiong;Feng Haoran

作者机构:School of Electronic EngineeringXi’an University of Posts and TelecommunicationsXi’an 710121China 

出 版 物:《The Journal of China Universities of Posts and Telecommunications》 (中国邮电高校学报(英文版))

年 卷 期:2024年第31卷第4期

页      面:54-69页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Key R&D Program of China:Science and Technology Innovation 2030(2022ZD0119001) 

主  题:CLARO chaotic mapping Levy flight convergence 

摘      要:An artificial rabbit optimization(ARO)algorithm based on chaotic mapping and Levy flight improvement is proposed,which has the advantages of good initial population quality and fast convergence compared with the traditional ARO algorithm,called *** is improved by applying three *** mapping is introduced,which can optimize the quality of the initial population of the *** Levy flight in the exploration phase,which can avoid the algorithm from falling into a local *** threshold of the energy factor is optimized,which can better balance exploration and *** efficiency of CLARO is tested on a set of 23 benchmark function sets by comparing it with ARO and different meta-heuristics *** last,the comparison experiments conclude that all three improvement strategies enhance the performance of ARO to some extent,with Levy flight providing the most significant improvement in ARO *** experimental results show that CLARO has better results and faster convergence compared to other algorithms,while successfully addressing the drawbacks of ARO and being able to face more challenging problems.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分