咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Black-box membership inference... 收藏

Black-box membership inference attacks based on shadow model

作     者:Han Zhen Zhou Wen'an Han Xiaoxuan Wu Jie Han Zhen;Zhou Wen'an;Han Xiaoxuan;Wu Jie

作者机构:School of Computer ScienceBeijing University of Posts and TelecommunicationsBeijing 100876China 

出 版 物:《The Journal of China Universities of Posts and Telecommunications》 (中国邮电高校学报(英文版))

年 卷 期:2024年第31卷第4期

页      面:1-16页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 0839[工学-网络空间安全] 08[工学] 0835[工学-软件工程] 081201[工学-计算机系统结构] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:machine learning membership inference attack shadow model black-box model 

摘      要:Membership inference attacks on machine learning models have drawn significant *** current research primarily utilizes shadow modeling techniques,which require knowledge of the target model and training data,practical scenarios involve black-box access to the target model with no available *** training data further complicate the implementation of these *** this paper,we experimentally compare common data enhancement schemes and propose a data synthesis framework based on the variational autoencoder generative adversarial network(VAE-GAN)to extend the training data for shadow ***,this paper proposes a shadow model training algorithm based on adversarial training to improve the shadow model s ability to mimic the predicted behavior of the target model when the target model s information is *** conducting attack experiments on different models under the black-box access setting,this paper verifies the effectiveness of the VAE-GAN-based data synthesis framework for improving the accuracy of membership inference ***,we verify that the shadow model,trained by using the adversarial training approach,effectively improves the degree of mimicking the predicted behavior of the target *** with existing research methods,the method proposed in this paper achieves a 2%improvement in attack accuracy and delivers better attack performance.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分