咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >解轴对称Laplace方程的间接边界积分方程的机械求积法与分... 收藏

解轴对称Laplace方程的间接边界积分方程的机械求积法与分裂外推算法

MECHANICAL QUADRATURE METHODS AND THEIR SPLITTING EXTRAPOLATION FOR SOLVING INDIRECT BOUNDARY INTEGRAL EQUATIONS OF AXISYMMETRIC LAPLACE EQUATIONS

作     者:李红娥 代振东 朱瑞 Li Honge;Dai Zhendong;Zhu Rui

作者机构:西华大学数学与计算机学院 四川大学经济学院 四川大学数学学院 

出 版 物:《高等学校计算数学学报》 (Numerical Mathematics A Journal of Chinese Universities)

年 卷 期:2011年第33卷第4期

页      面:319-328页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:西华大学重点学科-应用数学(XZD0910-09-1) 

主  题:axisymmetric problem Laplace equation indirect boundary integral equation quadrature method splitting extrapolation 

摘      要:By ring potentials,the boundary double integral equation of axisymmetric Laplace equation can be transformed into the indirect boundary single integral *** means of the quadrature rules of computing the singular periodic function,mechanical quadrature methods for solving mixed BIEs are presented, which possess high accuracy O(h03) and low computing ***, using the mutil-parameters asymptotic expansion,we not only improve the accuracy order of the approximation by the splitting extrapolation,but also derive a posteriori error *** examples show that the accuracy order of the approximation high,the extrapolation and posteriori error estimation are effective.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分