Fokker-Planck Type Equations with Sobolev Diffusion Coefficients and BV Drift Coefficients
Fokker–Planck Type Equations with Sobolev Diffusion Coefficients and BV Drift Coefficients作者机构:Institute of Applied MathematicsAcademy of Mathematics and Systems ScienceChinese Academy of Sciences
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2013年第29卷第2期
页 面:303-314页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by National Natural Science Foundation of China(Grant No.11101407) the Key Laboratory of Random Complex Structures and Data Science,Academy of Mathematics and Systems Science,Chinese Academy of Sciences(Grant No.2008DP173182)
主 题:DiPerna-Lions theory Fokker-Planck equation stochastic differential equation BV reg-ularity commutator estimate
摘 要:Combining Le Bris and Lions' arguments with Ambrosio's commutator estimate for BV vector fields, we prove in this paper the existence and uniqueness of solutions to the Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients.