咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >LIMIT CYCLES OF QUARTIC AND QU... 收藏

LIMIT CYCLES OF QUARTIC AND QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS VIA AVERAGING THEORY

LIMIT CYCLES OF QUARTIC AND QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS VIA AVERAGING THEORY

作     者:Y. Bouattia A. Makhlouf 

作者机构:Dept. of Math.University of Annaba 

出 版 物:《Annals of Differential Equations》 (微分方程年刊(英文版))

年 卷 期:2011年第27卷第1期

页      面:70-85页

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:limit cycle averaging method conic 

摘      要:We study the maximum number of limit cycles that can bifurcate from the period annulus surrounding the origin of a class of cubic polynomial differential systems using the averaging theory. More precisely,we prove that the perturbations of the period annulus of the center located at the origin of a cubic polynomial differential system,by arbitrary quartic and quintic polynomial differential systems,there respectively exist at least 8 and 9 limit cycles bifurcating from the periodic orbits of the period annulus using the first order averaging method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分