基于跨视图原型非对比学习的异构图嵌入模型
Heterogeneous graph embedding based on cross-view prototype non-contrastive learning作者机构:太原科技大学计算机科学与技术学院太原030024
出 版 物:《计算机应用研究》 (Application Research of Computers)
年 卷 期:2024年第41卷第9期
页 面:2611-2619页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金资助项目(U1931209) 山西省科技合作交流专项区域合作项目(202204041101037,202204041101033) 太原科技大学研究生教育创新项目(BY2023015)
主 题:异构图嵌入 非对比学习 有向筛选树正样本采样 交对称差比 峰值算子
摘 要:基于非对比学习(NCL)的异构图嵌入模型不依赖负样本学习数据的内在特征和模式,可能导致模型无法有效地学习节点之间的区分度。提出了一种基于跨视图原型非对比学习的异构图嵌入模型(XP-NCL),通过寻找额外的正样本提供更多关于源节点的上下文信息,并重新考虑了正样本之间的相似性,从而为下游任务学习更高效的节点表征。该模型首先设计了一种基于异构图随机游走的树型结构,通过筛选出满足局部结构约束的随机游走路径,从而构建正样本的有向筛选树(DFT),该树包含丰富的邻居信息和语义信息;其次针对异构图的特性,定义了跨视图原型指数(ISDR)和峰值算子(peak operator),从多个维度考虑了同类样本在数量和数值上的对齐;在此基础上,模型利用停止梯度更新进行训练。最后,在ACM、DBLP和freebase数据集上,实验验证了节点的分类和聚类性能,结果表明,即使不使用负样本,XP-NCL表征与其他同构图和异构图基线相比,很多情况下都可以呈现出更优越的性能。